12.3 Rotations Classwork

- 1 If the letter **P** is rotated 180 degrees, which is the resulting figure?
 - 1) **d**
 - 2) 🗅
 - 3) T
 - 4) **b**
- 2 Tell whether the transformation appears to be a rotation. Explain.

- 1) No; the figure appears to be flipped.
- 2) Yes; the figure appears to be turned around a point.

3 The accompanying diagram shows the starting position of the spinner on a board game.

How does this spinner appear after a 270° counterclockwise rotation about point *P*?

Name: _____

Rotations in the Coordinate Plane	
By 90° About the Origin	By 180° About the Origin
$N'(-y, x) \xrightarrow{90^{\circ}} N(x, y)$	$(\mathbf{x}, \mathbf{y}) \rightarrow (-\mathbf{x}, -\mathbf{y})$

- 4 What are the coordinates of A', the image of A(-3,4), after a rotation of 180° about the origin?
 - 1) (4,-3)
 - 2) (-4,-3)
 - 3) (3,4)
 - 4) (3,-4)
- 5 If point (5,2) is rotated counterclockwise 90° about the origin, its image will be point
 - 1) (2,5)
 - 2) (2,-5)
 - 3) (-2,5)
 - 4) (-5,-2)
- 6 The point (-3,4) is rotated 180° about the origin in a counterclockwise direction. What are the coordinates of its image?

Answer: _____

7 The coordinates of the vertices of $\triangle RST$ are R(-2,3), S(4,4), and T(2,-2). Triangle R'S'T' is the image of $\triangle RST$ after a rotation of 90° about the origin. State the coordinates of the vertices of $\triangle R'S'T'$. [The use of the set of axes below is optional.]

