Name: \qquad Period: \qquad Date: \qquad

12.3 Rotations Classwork

1 If the letter \mathbf{P} is rotated 180 degrees, which is the resulting figure?
1)
d
2)
3) T
4) b

2 Tell whether the transformation appears to be a rotation. Explain.

1) No; the figure appears to be flipped.
2) Yes; the figure appears to be turned around a point.

3 The accompanying diagram shows the starting position of the spinner on a board game.

How does this spinner appear after a 270° counterclockwise rotation about point P ?
1)

2)

4)

\qquad
\qquad Date: \qquad

Rotations in the Coordinate Plane	
$B y 90^{\circ}$ About the Origin	By 180° About the Origin
$(x, y) \rightarrow(-y, x)$	

4 What are the coordinates of A^{\prime}, the image of $A(-3,4)$, after a rotation of 180° about the origin?

1) $(4,-3)$
2) $(-4,-3)$
3) $(3,4)$
4) $(3,-4)$

5 If point (5,2) is rotated counterclockwise 90° about the origin, its image will be point

1) $(2,5)$
2) $(2,-5)$
3) $(-2,5)$
4) $(-5,-2)$

6 The point $(-3,4)$ is rotated 180° about the origin in a counterclockwise direction. What are the coordinates of its image?

Answer: \qquad

7 The coordinates of the vertices of $\triangle R S T$ are $R(-2,3), S(4,4)$, and $T(2,-2)$. Triangle $R^{\prime} S^{\prime} T^{\prime}$ is the image of $\triangle R S T$ after a rotation of 90° about the origin. State the coordinates of the vertices of $\Delta R^{\prime} S^{\prime} T^{\prime}$. [The use of the set of axes below is optional.]

