Using the Square Root Property

Walk-Around Activity

Walk-Around Activity: Using the Square Root Property

By caryn White

Table of Contents

Copy Right Informations: 2
Instructions 3
Version A 4
Absent Student Version 14
Student Response Page - Version A1 16
Student Response Page - Version A2 17
Version B 17
Version 2 18
Student Response Page - Version B1 19
Student Response Page - Version B2 20
KEYS. 21
Credits 22

Copy Right Informations:

This package is copyrighted 2011/2013 by Caryn White: Caryn Loves Math
All rights reserved. Purchase of this unit entitles the purchaser the right to reproduce the pages in limited quantities for classroom use only. You may also duplicate for use in with your students in your special education and English Language Learners support rooms. Duplication for an entire school, an entire school system or commercial purposes is strictly forbidden without written permission from the publisher.

Please contact me if you wish to be granted special permission. I can be contacted using the questions section of my TPT store.

www.teacherspayteachers.com/Store/Caryn-Loves-Math

Copying any part of this product and placing it on the Internet in any form (even a personal/classroom website) is strictly forbidden and is a violation of the Digital Millennium Copyright Act (DMCA). These items can be picked up in a google search and then shared worldwide for free.

Instructions

This activity is designed to help students with solving quadratic equations using the square root property. This is a beginning to level 1 activity, which means all the square roots are perfect squares.

This activity also gets students up and about. Place the 10 cards on the wall around your room. Students pick any card to begin with. They should work the problem on the page, then students look around the room for a graph that matches theirs. They should continue working until they return to the card they started with.

Included are 2 versions of this activity.

- One with 10 cards for use as a walk-around activity (and an absent student size)
- A shorter version with only 5 cards great for table work, bell work or use as a review.

To help with grading, I have included 2 student answer sheets: One that includes room to show work, and another with just boxes.

Hints and suggestions:

When making copies of the shorter version, I use different colored paper. This allows for easier identification when students misplace a piece.

Possible Uses

- Mid-Lesson or End of Lesson Check for understanding
- Math Station for students that have finished work early
- Test Review
- Homework Alternative
- Bell work

Have Fun. Thanks for your purchase.

\qquad

Student Response Page - Version A1

Name \qquad
Period \qquad

Pick a card to start with. Write the number in the $1^{\text {st }}$ box. Solve the quadratic equation using the square root property, then find the solution on another card. Write the card number in the $2^{\text {nd }}$ box, and then continue until you reach your first card again.

Show work below

Student Response Page - Version A2

Name \qquad
Period \qquad

Pick a card to start with. Write the number in the $1^{\text {st }}$ box. Solve the quadratic equation using the square root property, then find the solution on another card. Write the card number in the $2^{\text {nd }}$ box, and then continue until you reach your first card again.

Student Response Page

Name \qquad
Period \qquad
Pick a card to start with. Write the number in the $1^{\text {st }}$ box. Solve the quadratic equation using the square root property, then find the solution on another card. Write the card number in the $2^{\text {nd }}$ box, and then continue until you reach your first card again.

Student Response Page

Name \qquad
Period \qquad

Pick a card to start with. Write the number in the $1^{\text {st }}$ box. Solve the quadratic equation using the square root property, then find the solution on another card. Write the card number in the $2^{\text {nd }}$ box, and then continue until you reach your first card again.

Version B

Student Response Page - Version B1

Name \qquad
Period \qquad

Pick a card to start with. Write the number in the $1^{\text {st }}$ box. Solve the quadratic equation using the square root property, then find the solution on another card. Write the card number in the $2^{\text {nd }}$ box, and then continue until you reach your first card again.

Show work below

Student Response Page
Name \qquad
Period \qquad

Pick a card to start with. Write the number in the $1^{\text {st }}$ box. Solve the quadratic equation using the square root property, then find the solution on another card. Write the card number in the $2^{\text {nd }}$ box, and then continue until you reach your first card again.

Show work below
\square

Student Response Page - Version B2

Name \qquad
Period \qquad

Pick a card to start with. Write the number in the $1^{\text {st }}$ box. Solve the quadratic equation using the square root property, then find the solution on another card. Write the card number in the $2^{\text {nd }}$ box, and then continue until you reach your first card again.

Student Response Page
Name \qquad
Period \qquad

Pick a card to start with. Write the number in the $1^{\text {st }}$ box. Solve the quadratic equation using the square root property, then find the solution on another card. Write the card number in the $2^{\text {nd }}$ box, and then continue until you reach your first card again.

Student Response Page

Name \qquad
Period \qquad

Pick a card to start with. Write the number in the $1^{\text {st }}$ box. Solve the quadratic equation using the square root property, then find the solution on another card. Write the card number in the $2^{\text {nd }}$ box, and then continue until you reach your first card again.

Note: Students may start with any cards; shift the answer to match the starting point.

Version B: Set of 5 Cards

$\begin{aligned} & \text { 1. } \mathrm{m}^{2}-12=109 \\ & m^{2}=121 \\ & \sqrt{(m)^{2}}= \pm \sqrt{121} \\ & m= \pm 11 \end{aligned}$	$\begin{aligned} 2 \cdot 3 c^{2}-17=10 & \\ 3 c^{2} & =27 \\ c^{2} & =9 \\ \sqrt{(c)^{2}} & = \pm \sqrt{9} \\ c & = \pm 3 \end{aligned}$	$\text { 3. } \begin{aligned} & \frac{1}{2}-x^{2}=18 \\ & x^{2}=36 \\ & \sqrt{(x)^{2}}= \pm \sqrt{6} \\ & x= \pm 6 \end{aligned}$
$\text { 4. } \begin{gathered} (v+5)^{2}=4 \\ \sqrt{(v+5)^{2}}= \pm \sqrt{4} \\ v+5= \pm 2 \\ v=-5 \pm 2 \\ v=-7 \text { or }-3 \end{gathered}$	$\begin{gathered} 5 \cdot(y+1)^{2}=25 \\ \sqrt{(y+1)^{2}}= \pm \sqrt{25} \\ y+1= \pm 5 \\ y=-1 \pm 5 \\ y=-6 \text { or } 4 \end{gathered}$	6. $\begin{gathered} (x-6)^{2}=49 \\ \sqrt{(x-6)^{2}}= \pm \sqrt{49} \\ x-6= \pm 7 \\ y=6 \pm 7 \\ y=-1 \text { or } 13 \end{gathered}$
$\begin{gathered} \text { 7. }(2 \mathrm{x}-7)^{2}=0 \\ \sqrt{(2 x-7)^{2}}= \pm \sqrt{0} \\ 2 x-7=0 \\ 2 x=7 \\ v=\frac{7}{2} \end{gathered}$	$\begin{aligned} & \text { 8. }(y-4)^{2}=64 \\ & \sqrt{(y-4)^{2}}= \pm \sqrt{64} \\ & y-4= \pm 8 \\ & y=4 \pm 8 \\ & y=-4 \text { or } 12 \end{aligned}$	$\text { 9. } \begin{gathered} (w-5)^{2}=81 \\ \sqrt{(w-5)^{2}}= \pm \sqrt{81} \\ w-5= \pm 9 \\ w=5 \pm 9 \\ w=-4 \text { or } 14 \end{gathered}$
$\begin{gathered} 10.3(x-8)^{2}=27 \\ (x-8)^{2}=9 \\ \sqrt{(x-8)^{2}}= \pm \sqrt{9} \\ x-8= \pm 3 \\ x=8 \pm 3 \\ x=5 \text { or } 11 \end{gathered}$		

All graphics were designed by Caryn White except the following.

