Warm-up

Get two highlighters from the pink bin.

1.
$$\frac{3(x-4)}{5} + 8 = 20$$

2. Label each figure with the correct geometric vocabulary.

3. $\frac{3(x-4)}{5} = 12.5$

Iine segment

3. $\frac{3(x-4)}{5} = 12.5$

3. $\frac{3(x-4)}{5} = 12.5$

ine

3. $\frac{3(x-4)}{5} = 12.5$
 $\frac{3(x-4)}{5} = 12.5$
 $\frac{3(x-4)}{5} = 12.5$
 $\frac{3(x-4)}{5} = 12.5$

ine

ray

3. $\frac{3(x-4)}{5} = 12.5$
 $\frac{3(x-4)}{5} = 12.5$
 $\frac{3(x-4)}{5} = 12.5$

ine

ray

point

3. Calculate the perimeter of the triangle.

What am I learning today?

Learning Objective 1.3

How can I describe and use different types of angles?

What am I going to do today?

- Complete and grade warm-up
- Discuss HW Answers
- Take notes on types of angles
- Practice identifying and using types of angles

What will I do to show that I have learned it?

I can...

Classify angles using their angle meaurements between 0° - 180°

Angle – Two rays connected by a common endpoint called the

2 ways to name an angle

- 1. Use 3 letters with the vertex letter being in the 3
- 2. Use the letter or number of the <u>Vertex</u> as long as it *cannot be* confused with another angle (| angle)

Acute	Right	Obtuse	Straight
Angle that measures 1 (55) than 90°	Angle that measures exactly 90°	Angle that measures More than 90°	Angle that measures
30° 7	90°	/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(180°

*** NEVER ASSUME THE MEASURE OF AN ANGLE!!! ***

Adjacent Angles – Two angles that have a $\frac{\text{Common}}{\text{vertex and } \frac{\text{DoN'T}}{\text{overlap.}}}$ side and

Don't have a common Side

Don't have a common vertex

uverlap!

Which angles are adjacent? 1.

LABZ and LZBC

2. Which angles are acute?

LABZ and LZBC

3. Which angle is obtuse? **LABC**

Angle Addition Postulate – Adding two <u>Adjacent</u> angle measures to create a larger angle measure.

m LABC = m LABZ+m LZBC T (large L) (adjacen+ Ls) measure

<u>Angle Bisector</u> – A line or ray that cuts an angle into <u>Q</u> congruent angles

1. If the $m \angle FGB = 95^{\circ}$ and the $m \angle BGH = 65^{\circ}$, what is the $m \angle FGH$?

2. If the $m \angle FGB = 45^{\circ}$, the $m \angle BGH = 65^{\circ}$, and the $m \angle FGH = (2x + 80)^{\circ}$, what is x?

$$(2x+80)^{\circ} \qquad 45+65 = 2x+80$$

$$110 = 2x+80$$

$$30 = 2x$$

$$15 = x$$

3. If the $m \angle MLU = 28^{\circ}$ and the $m \angle MLK = 120^{\circ}$, what is the $m \angle KLU$?

4. If the $m \angle MLU = (2x + 40)^\circ$, $m \angle MLK = (5x + 145)^\circ$, and the $m \angle KLU = 90^\circ$, what is the $m \angle MLK$?

5. If the $m \angle VUT = 174^{\circ}$ and \overrightarrow{UJ} bisects $\angle VUT$, find the measures of ∠VUJ and ∠JUT.

6. If \overrightarrow{UJ} bisects $\angle VUT$, the $m \angle VUJ = (12x)^{\circ}$, and $m \angle JUT = (10x + 12)^{\circ},$

Summary

Take a few minutes to summarize today's lesson. Remember to give yourself key words to help you study later on for the test.

Classwork:

Complete the classwork identifying angles and using them to solve for the measures of angles.

HW: On top of the bin

#11 from CW

