Standard Form of a Quadratic

$$
\begin{aligned}
& \mathrm{f}(\mathbf{x})=\mathrm{ax}^{2}+\mathbf{b x}+\mathbf{c} \\
& \text { Vertex: }\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right) \quad \mathbf{y} \text {-intercept: (0, c) } \\
& \mathbf{a}>\mathbf{0} \text { : opens up } \quad \mathbf{a}<\mathbf{0} \text { : opens down }
\end{aligned}
$$

Example: $f(x)=2 x^{2}+28 x+46$

For the following, identify the vertex of the graph and whether it is opening up or down.
Ex. $1 f(x)=x^{2}+6 x+8$
Ex. $3 g(x)=-x^{2}-5$

Ex. $2 h(x)=-2 x^{2}+4 x+2 \quad$ Ex. $4 m(x)=x^{2}+6 x$

Graph $y=2 x^{2}+6 x+1$

I 2. Find the vertex using $x=\frac{-b}{2 a}$ and then
I substitute that value into the equation.
3. Draw the axis of symmetry (dotted).
4. Identify two x-values close to the vertex
to evaluate and then reflect those points
across the axis of symmetry.

