Converting from Vertex Form to Standard Form

Vertex Form: $y = a(x - h)^2 + k$ Standard Form

Standard Form: $ax^2 + bx + c = 0$

To change a quadratic from vertex form to standard form:

- 1- Rewrite quadratic in expanded form.
- 2- Multiply your binomials using the distributive property.
- 3- If there is an "a" multiply it through parentheses.
- 4- Combine like terms.

Ex. 1
$$y = (x-2)^2 + 3$$

Ex. 2
$$y = -3(x+1)^2 - 4$$

Ex. 3
$$y = 3(x-4)^2 + 6$$

Converting from Standard Form to Vertex Form

1- Find the vertex. Find "x" using vertex formula. Find "y" by plugging x value into equation.

$$X = \frac{-b}{2a}$$

2- Substitute a, h, and k into vertex form. $y = a(x - h)^2 + k$

Ex. 1
$$y = x^2 - 8x + 7$$

Ex. 2
$$y = -2x^2 - 4$$

Ex. 3
$$y = 4x^2 + 8x - 9$$

Converting from Vertex Form to Standard Form

Vertex Form:
$$y = a(x - h)^2 + k$$

Standard Form: $ax^2 + bx + c = 0$

To change a quadratic from vertex form to standard form:

- 1- Rewrite quadratic in expanded form.
- 2- Multiply your binomials using the distributive property.
- 3- If there is an "a" multiply it through parentheses.
- 4- Combine like terms.

Ex. 1
$$y = (x-2)^2 + 3$$

Ex. 2
$$y = -3(x+1)^2 - 4$$

Ex. 3
$$y = 3(x-4)^2 + 6$$

Converting from Standard Form to Vertex Form

1- Find the vertex. Find "X" using vertex formula. Find "y" by plugging x value into equation.

$$x = \frac{-b}{2a}$$

2- Substitute a, h, and k into vertex form. $y = a(x - h)^2 + k$

Ex. 1
$$y = x^2 - 8x + 7$$

Ex. 2
$$y = -2x^2 - 4$$

Ex. 3
$$y = 4x^2 + 8x - 9$$