Quadratic Application: (Factoring)

The Demon Drop at Cedar Point in Ohio takes riders to the top of a tower and drops them 60 feet. A function that approximates this ride is $h=-16 t^{2}+64 t+60$, where h is the height in feet and t is the time in seconds. About how man ers to drop 60 feet?

The percent of U.S. households with high speed Internet h can be estimated by
$h=-0.2 n^{2}+7.2 n+1.5$, where n is the number of years since 1990. Use the Quadratic Formula to determine when 20% of the population will have high speed Internet.

At a swim meet, Janet dives from a diving board that is 48 feet high. Her position above the water is represented by the equation $h(t)=-16 t^{2}+$ $24 t+40$, where t represents time in seconds and $h(t)$ represents height in feet.

Quadratic Application: (Factoring)

The Demon Drop at Cedar Point in Ohio takes riders to the top of a tower and drops them 60 feet. A function that approximates this ride is $h=-16 t^{2}$
the height in feet and t is the time in seconds. About how mant ers to drop 60 feet?

The percent of U.S. households with high speed Internet h can be estimated by
$h=-0.2 n^{2}+7.2 n+1.5$, where n is the number of years since 1990. Use the Quadratic Formula to determine when 20% of the population will have high speed Internet.

At a swim meet, Janet dives from a diving board that is 48 feet high. Her position above the water is represented by the equation $h(t)=-16 t^{2}+$ $24 t+40$, where t represents time in seconds and $h(t)$ represents height in feet.

