Name		Period	11/2 - 11/13
	GEOMETRY UNIT 6	6 – CONGRUENT TRIANG	GLES
Vocabulary Terms:			
Congruent Correspor			SSS
Congruency stateme	•	ed side	SAS
Included angle	Hypotenuse	e	ASA
Included side	Leg		AAS
			11/2
			Congruent Polygons
11/5	11/6	11/7-8	11/9
SSS and SAS	ASA, AAS, HL	Congruent Triangles and Logic	СРСТС
11/12	11/13		
Review	Test		
		_	
Friday, 11/2	Chanter / Section 3:	Congruent Triangles	
I can match the correspond	onding parts of congruent figure		ency statement.
			ency statement.
I can prove polygons co	ngruent using the definition of co	ongruent polygons.	
ASSIGNMENT: Pg. 23	4 (#2-11, 13-16, 19, 21-22, 28	3-31)	Completed:
Monday, 11/5			
	Chapter 4 Section 4: Triang	·	S
	ngles are congruent using SSS or		
ASSIGNMENT: Triangle Congruence WST - #2, 4, 8, 9, 13, 15, 16, 19 Completed:			Completed:
Tuesday, 11/6			
-	Chapter 4 Section 5: Triangle	Congruence: ASA, AAS, and	i HL
	ngles are congruent using ASA, A		
	le Congruence WST - Finish		Completed:
Wednesday or Thursda	ay, 11/7-8		
Chapter 4 Se	ection 4 and 5: Triangle Congr	uence: SSS and SAS AND A	SA, AAS, and HL
	ngles are congruent using SSS, SA		
I can determine the mis	sing piece of information needed	d to prove triangles congruen	t
I can complete a fill-in-t	•		
I can use triangle congru	uence and logic to solve problem	ns.	
ASSIGNMENT: Triangle Congruence and Logic Worksheet Completed:			Completed:
Friday, 11/9			
,, - - , -	Chapter 4 Sec	ction 6: CPCTC	
I can use CPCTC to solve	e different types of problems.		
I can use CPCTC in geom	netric proofs		
ASSIGNMENT: CPCTC	Worksheet		Completed:

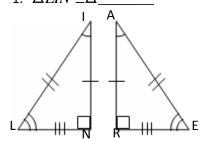
Monday, 11/12

	Review Day	
ASSIGNMENT: Review for Test		Completed:

Tuesday, 11/13

Test Day	
Unit 6 Test: Congruent Triangles	Grade:

If you miss the review day, you are still expected to take the test on the test day. For more help BEFORE the test:


- 1. Use the indicated chapters in your book
- 2. Use the book online (it has videos and a homework help section)
- 3. Use Google to find more resources
- 4. Come to tutoring (with assignment)

CONGRUENT Polygons Examples

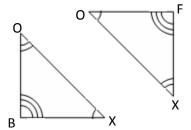
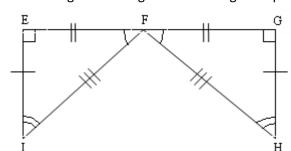

Properties of Congruent Polygons

DIAGRAM	CORRESPONDING ANGLES	CORRESPONDING SIDES
$ \begin{array}{c} A \\ C \\ C \end{array} $ $ \begin{array}{c} ABC \cong \triangle DEF \end{array} $	$\angle A \cong \angle D$ $\angle B \cong \angle E$ $\angle C \cong \angle F$	$\overline{AB} \cong \overline{DE}$ $\overline{BC} \cong \overline{EF}$ $\overline{AC} \cong \overline{DF}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\angle P \cong \angle W$ $\angle Q \cong \angle X$ $\angle R \cong \angle Y$ $\angle S \cong \angle Z$	$ \overline{PQ} \cong \overline{WX} $ $ \overline{QR} \cong \overline{XY} $ $ \overline{RS} \cong \overline{YZ} $ $ \overline{PS} \cong \overline{WZ} $


- I. Name the congruent triangles.
- 1. $\triangle LIN \cong \triangle$

△FOX ≅△_____

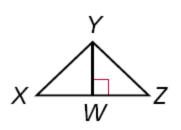
- II. Name the congruent triangle and the congruent parts..
- 3.

△*FGH* ≅△_____

$$\overline{FG} \cong ___$$

Use the congruency statement to fill in the corresponding congruent parts.

$$\measuredangle E \cong \measuredangle \underline{\hspace{1cm}} \overline{FE} \cong \underline{\hspace{1cm}}$$


$$\angle FIE \cong \angle ___$$
 $\overline{IE} \cong ___$

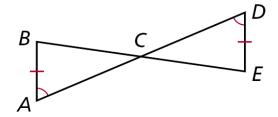
Example 3: Proving Triangles Congruent

Given: $\angle YWX$ and $\angle YWZ$ are right angles.

YW bisects $\angle XYZ$. W is the midpoint of XZ. $XY \cong YZ$.

Prove: $\Delta XYW \cong \Delta ZYW$

Statements	Reasons
1. ∠ <i>YWX</i> and ∠ <i>YWZ</i> are rt. ∠s.	1. Given
2.	2. Rt. ∠ ≅ Thm.
3. YW bisects ∠XYZ	3. Given
4. ∠ <i>XYW</i> ≅ ∠ <i>ZYW</i>	4.
5. W is mdpt. of \overline{XZ}	5. Given
6. $\overline{XW} \cong \overline{ZW}$	6.
7. $\overline{YW} \cong \overline{YW}$	7. Reflex. Prop. of ≅
8. ∠X ≅ ∠Z	8. Third ∠s Thm.
9. <i>XY</i> ≅ <i>YZ</i>	9. Given
10.	10.


Check It Out! Example 3

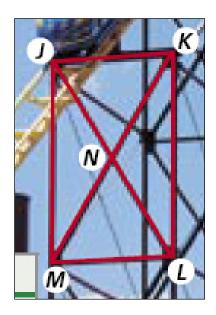
Given: AD bisects BE.

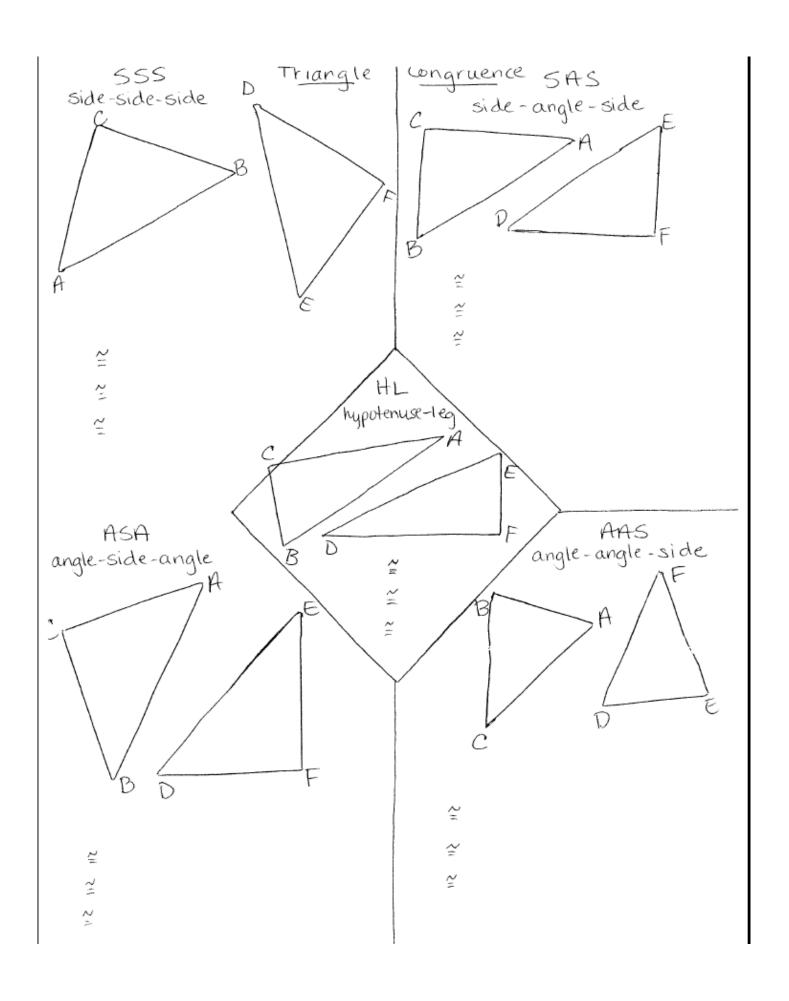
BE bisects AD.

 $AB \cong DE$, $\angle A \cong \angle D$

Prove: $\triangle ABC \cong \triangle DEC$

Statements	Reasons
1. ∠A ≅ ∠D	1.
2. ∠BCA ≅ ∠DCE	2.
3.	3. Third ∠s Thm.
4. \overline{AB} ≅ \overline{DE}	4. Given
5. \overline{AD} bisects \overline{BE} , \overline{BE} bisects \overline{AD}	5. Given
6.	6. Def. of bisector
7. ∆ABC ≅ ∆DEC	7.

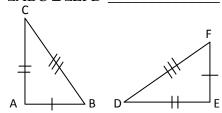

Check It Out! Example 4


Use the diagram to prove the following.

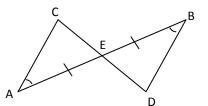
Given: MK bisects JL. JL bisects MK. $JK \cong ML$. $JK \mid \mid ML$.

Prove: $\triangle JKN \cong \triangle LMN$

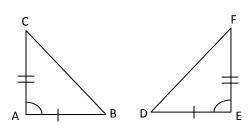
Statements	Reasons
1. \overline{JK} ≅ \overline{ML}	1. Given
2. \overline{JK} \overline{ML}	2. Given
3. ∠ <i>JKN</i> ≅ ∠ <i>NML</i>	3.
4. \overline{JL} and \overline{MK} bisect each other.	4. Given
5. $\overline{JN} \cong \overline{LN}$, $\overline{MN} \cong \overline{KN}$	5. Def. of bisector
6. ∠KNJ ≅ ∠MNL	6.
7.	7. Third ∠s Thm.
8.	8.

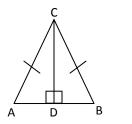

Triangle Congruence

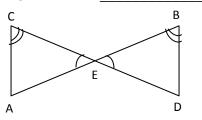
1. List the five ways to prove that triangles are congruent.

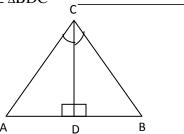


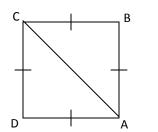
For each pair of triangles, tell which of the above postulates make the triangles congruent.

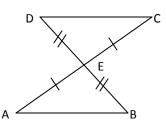

2. ΔABC ≅ ΔEFD _____

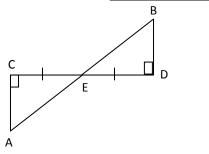

3. ΔAEC ≅ ΔBED

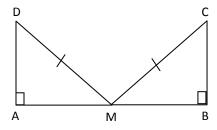

4. ΔABC ≅ ΔEFD _____

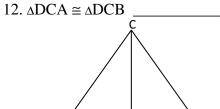

5. ΔADC ≅ ΔBDC

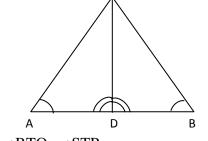

6. $\triangle ACE \cong \triangle DBE$

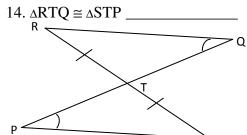

7. $\triangle ADC \cong \triangle BDC$

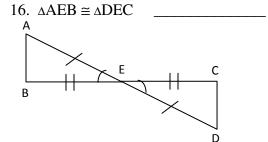

8. ΔABC ≅ ΔCDA _____

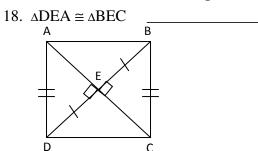

9. $\triangle ABE \cong \triangle CDE$

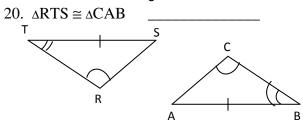


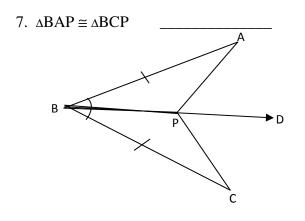

10. $\triangle CAE \cong \triangle DBE$

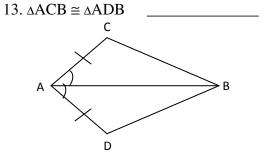


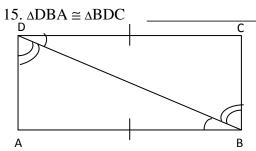

11. \triangle MAD $\cong \triangle$ MBC

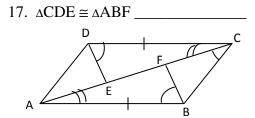


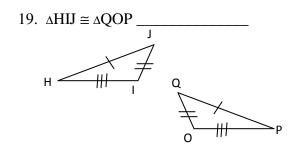


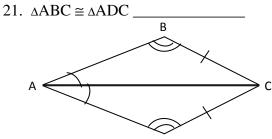


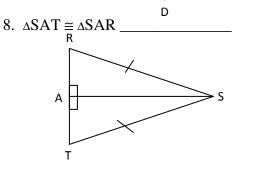


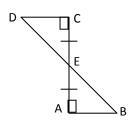


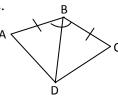




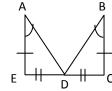




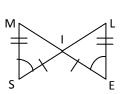



Triangle Congruence and Logic Worksheet

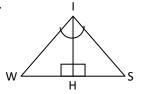
I. For each pair of triangles, tell: (a) Are they congruent (b) Write the triangle congruency statement. (c) Give the postulate that makes them congruent.


1.

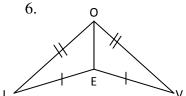
b. Δ____ ≅ Δ ____



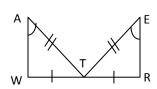
b. Δ____ ≅ Δ ____



b. Δ____ ≅ Δ ____

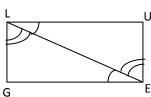

4.

5.

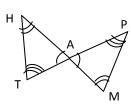


b. Δ____ ≅ Δ ____

b. Δ____ ≅ Δ ____

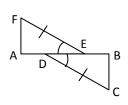

7.

b. Δ____ ≅ Δ ____

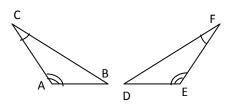

b. Δ____ ≅ Δ ____

8.

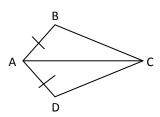
b. Δ____ ≅ Δ ____


9.

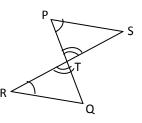
b. Δ____ ≅ Δ ____


II. Using the given postulate, tell which parts of the pair of triangles should be shown congruent.

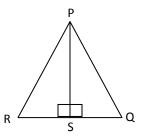
10. SAS


_____ ≅ ____

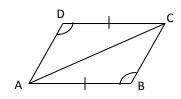
11. ASA


_____ ≅ ____

12. SSS


_____ ≅ ____

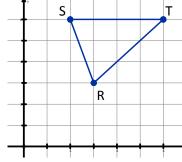
13. AAS


≅

14. HL

_____ ≅ ____

15. ASA

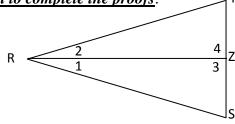


_____ ≅ ____

III. Multiple Choice

16. Which set of coordinates represents the vertices of a triangle congruent to ΔRST ? (Hint: Find the lengths of the sides of ΔRST)

- A. (3, 4)(3, 0)(0, 0)
- B. (3,3)(0,4)(0,0)
- C. (3, 1)(3, 3)(4, 6)
- D. (3,0)(4,4)(0,6)


17. Given $\triangle ABC$ and $\triangle DEF$. Which of the following pairs of corresponding parts would correctly prove the triangles congruent by ASA?

- A. $\angle B \cong \angle E, \angle A \cong \angle D, \overline{AB \cong DE}$
- B. $\angle C \cong \angle F, \angle A \cong \angle D, \overline{AB \cong DE}$
- C. $\angle B \cong \angle E, \angle C \cong \angle F, \overline{AB \cong DE}$
- D. $\angle B \cong \angle E, \angle A \cong \angle D, \overline{AC \cong DF}$

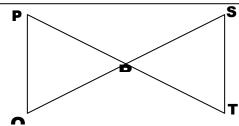
For 18 – 19: Fill in the blank with the correct statement or reason to complete the proofs.

18. GIVEN: \overline{RZ} bisects \overline{TS} ; $\angle 3 \cong \angle 4$

PROVE: $\Delta RZS \cong \Delta RZT$

STATEMENTS	REASONS
1. \overline{RZ} bisects \overline{TS}	
2.	Definition of a segment bisector
3.	Given
4. $\overline{RZ} \cong \overline{RZ}$	
E ADZC & ADZT	

- A. Reflexive Property
- B. Given
- C. $\angle 3 \cong \angle 4$


D.
$$\overline{TZ} \cong \overline{ZS}$$

E. SAS

19. GIVEN:
$$\angle Q \cong \angle S$$
;

R is the midpoint of \overline{QS} .

PROVE: $\Delta PRQ \cong \Delta TRS$

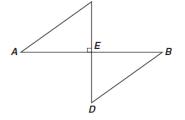
STATEMENTS	REASONS
1. ∠Q≅∠S	
2.	Given
3. $\overline{QR} \cong \overline{RS}$	
4.	Vertical Angle Theorem
F ADDO - ATDO	

- 15. $\triangle PRQ \cong \triangle TRS$
 - A. $\angle PRQ \cong \angle SRT$
- B. Definition of midpoint

C. ASA

D. Given

E. R is the midpoint of \overline{QS}


20. Which method listed below could *not* be used to prove that two triangles are congruent?

- A Prove all three sets of corresponding sides congruent.
- B Prove all three sets of corresponding angles congruent.
- C Prove that two sides and an included angle of one triangle are congruent to two sides and an included angle of the other triangle.
- D Prove that two angles and an included side of one triangle are congruent to two angles and an included side of the other triangle.

21. Given: E is the midpoint of \overline{AB} , $\angle C \cong \angle D$

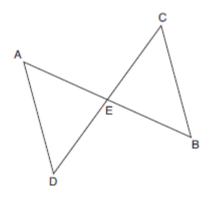
Which of the following statements must be true?

- **B** $\overline{AE} \cong \overline{ED}$
- $\mathbf{C} \quad \overline{CE} \cong \overline{ED}$
- **D** $\overline{CD} \cong \overline{BA}$

22. In the figure below, $\overline{AC} \cong \overline{DF}$ and $\angle C \cong \angle F$ Which additional information would

which additional information wou enough to prove $\triangle ABC \cong \triangle DEF$?

$$\mathbf{A} \overline{AB} \cong \overline{DE}$$

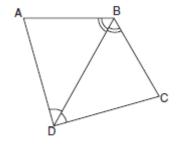

$$\mathbf{B} \ \overline{AB} \cong \overline{BC}$$

$$\mathbf{C} \ \overline{BC} \cong \overline{EF}$$

$$\mathbf{D} \ \overline{BC} \cong \overline{DE}$$

In the diagram below of △DAE and △BCE, AB and CD intersect at E, such that AE ≅ CE and ∠BCE ≅ ∠DAE.

Triangle DAE can be proved congruent to triangle BCE by


(1) ASA

(3) SSS

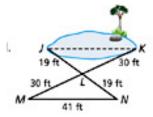
(2) SAS

(4) HL

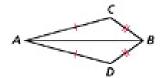
24. The diagram below shows a pair of congruent triangles, with $\angle ADB \cong \angle CDB$ and $\angle ABD \cong \angle CBD$.

Which statement must be true?

- (1) $\angle ADB \cong \angle CBD$
- (3) $\overline{AB} \cong \overline{CD}$
- (2) $\angle ABC \cong \angle ADC$
- (4) $\overrightarrow{AD} \cong \overrightarrow{CD}$


24. Draw a counterexample for the following statement.

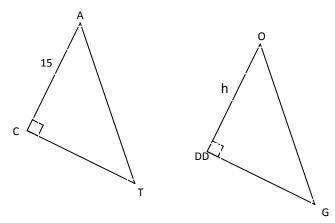
If the 3 angles in one triangle are congruent to the corresponding angles in another triangle, then the 2 triangles are congruent.


______ parts are also _______.

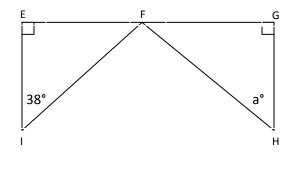
Examples:

1) Find JK

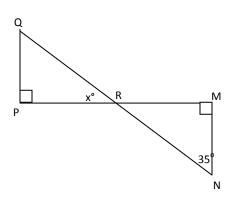
Given: AC ≅ AD, CB ≅ DB Prove: AB bisects ∠CAD.

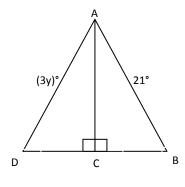

Proof:

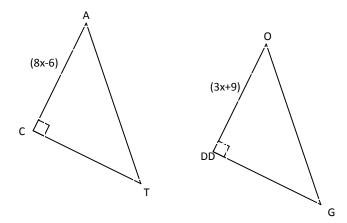
Statements	Reasons
 AC ≅ AD, CB ≅ DB 	1. a ?
2. b. <u>?</u>	2. Reflex. Prop. of ≅
 △ACB ≅ △ADB 	3. c. ?
 ∠CAB ≅ ∠DAB 	4. d. ?
 ĀB bisects ∠CAD 	5. e. ?

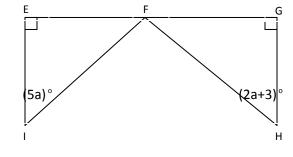

3) Additional Examples from worksheet: #3, 5, and 16

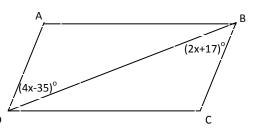
CPCTC Worksheet

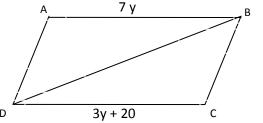

- I. Solve for the variable.
- 1. $\triangle CAT \cong \triangle DOG$. Find h.

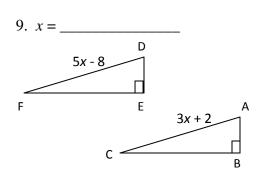

2. $\triangle IEF \cong \triangle HGF$. Find a.

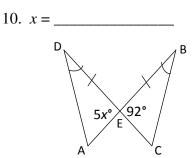

3. $\triangle PQR \cong \triangle MNR$. Find x.


4. $\triangle ABC \cong \triangle ADC$. Find y.

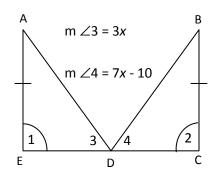

- II. Set up an equation and then solve for the variable.
- 5. $\triangle CAT \cong \triangle DOG$. Find x.


6. $\triangle IEF \cong \triangle HGF$. Find a.

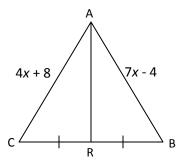

7. $\triangle ABD \cong \triangle CDB$. Find x.

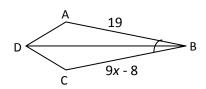


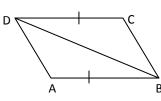
8. $\triangle ABD \cong \triangle CDB$. Find y.

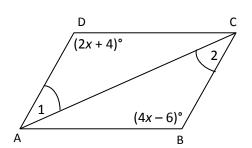


III. For which value(s) of *x* are the triangles congruent?

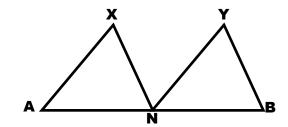








$$m \angle CDB = (15x + 3)^{\circ}$$
 $m \angle ABD = (10x + 18)^{\circ}$

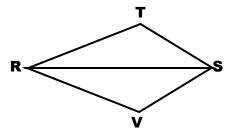


IV. Proofs

17. GIVEN: N is the midpoint of \overline{AB}

$$\frac{\overline{AX}}{\overline{NX}} \cong \overline{\overline{NY}}$$

PROVE: $\angle X \cong \angle Y$

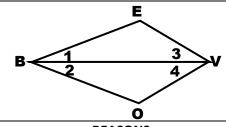


STATEMENTS	REASONS
1. N is the midpoint of \overline{AB}	
2.	Definition of a midpoint
3. $\overline{AX} \cong \overline{NY}$	
4.	Given
$5. \ \triangle AXN \cong \triangle NYB$	
6.	СРСТС

18. GIVEN: $\overline{RT} \cong \overline{RV}$

 $\overline{TS} \cong \overline{VS}$

PROVE: $\angle RST \cong \angle RSV$



STATEMENTS	REASONS
1.	Given
2.	
3.	Reflexive
4.	SSS
5. ∠RST ≅ ∠RSV	

19. GIVEN: \overrightarrow{VB} bisects $\angle EVO$

 \overrightarrow{BV} bisects \angle EBO

PROVE: $\angle E \cong \angle O$

STATEMENTS	REASONS
1. \overrightarrow{VB} bisects \angle EVO	
2.	Definition of Angle Bisector
3.	Given
4. ∠1 ≅ ∠2	
5. $\overline{BV} \cong \overline{BV}$	
6.	ASA
7. ∠E ≅ ∠O	