<u>Learning Objective(s)</u>:

Main Ideas/ Questions

Definitions

Notes

<u>Congruent Triangles</u> – Two triangles that ALL 3 _____ and are CONGRUENT!

<u>Corresponding Parts</u> – Parts of congruent triangles that "_____"

Congruence Statement

Must follow the SAME _____!!

How can we write three different congruency statements?

Congruence Statement Examples

Complete the congruence statement

 $\Delta NKJ \cong \Delta$

 $\Delta YXZ \cong \Delta$

 $\Delta RTS \cong \Delta$

If $\triangle ABC \cong \triangle DEF$, then...

Corresponding Parts with Diagrams

1) *BC* ≅ _____

- I) BC = ____
- 2) ∠*A* ≅ ____
- 3) *ED* ≅ _____
- 4) ∠*D* ≅ _____

Corresponding Parts with No Diagrams

If $\triangle CAT \cong \triangle DOG$, then...

- **1)** *AC* ≅ _____
- 2) ∠*T* ≅ _____
- 3) *GO* ≅ _____
- 4) ∠*ATC* ≅ _____

Main Ideas/ Questions

5 Ways to Prove Triangles are Congruent

YOU CANNOT SKIP A SIDE **AND** AN ANGLE AT THE SAME TIME!

Lookout: Markings You Can Add!

Share a side

Reason: Reflexive Property

Vertical Angles

Reason: Vertical Angles are congruent

Alternate Interior Angles

Reason: Alt. Int. angles are congruent

Isosceles Triangle

Reason: Opposite congruent sides are congruent angles.

Summary

Summarize the lesson in your own words with the help of the guided questions.

Why is it important to understand corresponding parts and writing congruency statements using congruent triangles?