Dilations and Similarity in the Coordinate Plane

Use graph paper to explore similarity in the coordinate plane.

1. Write down the vertices of $\triangle P Q R$.
2. Multiply each coordinate of each vertex of $\triangle P Q R$ by 3 . Then graph $\triangle P^{\prime} Q^{\prime} R^{\prime}$ with these new vertices. How is $\triangle P^{\prime} Q^{\prime} R^{\prime}$ related to $\triangle P Q R$?

3. Now multiply each coordinate of each vertex of $\triangle P Q R$ by $\frac{1}{2}$. Then graph $\triangle P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ with these new vertices. How is $\triangle P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ related to $\triangle P Q R$?
4. A dilation is a transformation that changes the size of a figure but not its shape. For a dilation with a scale factor of k, you can find the image of a point by multiplying each coordinate by $k:(a, b) \rightarrow(k a, k b)$. What is the scale factor of the dilation that mapped $\triangle P Q R$ to $\triangle P^{\prime} Q^{\prime} R^{\prime}$?
5. What is the scale factor of the dilation that mapped $\triangle P Q R$ to $\triangle P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$?

THINK AND DISCUSS

6. Describe how to find the image of the point $(12,-15)$ under a dilation with scale factor $\frac{2}{3}$.

EXPLORATION

8-5

Dilations and Similarity in the Coordinate Plane

Use graph paper to explore similarity in the coordinate plane.

1. Write down the vertices of $\triangle P Q R$.
$P(0,4), Q(0,0), R(2,0)$
2. Multiply each coordinate of each vertex of $\triangle P Q R$ by 3 . Then graph $\triangle P^{\prime} Q^{\prime} R^{\prime}$ with these new vertices. How is $\triangle P^{\prime} Q^{\prime} R^{\prime}$ related to $\triangle P Q R$? $\quad \triangle P^{\prime} Q^{\prime} R^{\prime} \sim \triangle P Q R$

3. Now multiply each coordinate of each vertex of $\triangle P Q R$ by $\frac{1}{2}$. Then graph $\triangle P^{\prime \prime} Q^{\prime \prime} R$ " with these new vertices. How is $\triangle P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ related to $\triangle P Q R ? \quad \triangle P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime} \sim \triangle P Q R$
4. A dilation is a transformation that changes the size of a figure but not its shape. For a dilation with a scale factor of k, you can find the image of a point by multiplying each coordinate by $k:(a, b) \rightarrow(k a, k b)$. What is the scale factor of the dilation that mapped $\triangle P Q R$ to $\triangle P^{\prime} Q^{\prime} R^{\prime}$? 3
5. What is the scale factor of the dilation that mapped $\triangle P Q R$ to $\triangle P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime} ? \frac{1}{2}$

THINK AND DISCUSS

6. Describe how to find the image of the point $(12,-15)$ under a dilation with scale factor $\frac{2}{3}$. Multiply each coord. by $\frac{2}{3}:(8,-10)$.
