\qquad Date: \qquad
Triangle Midsegment and Proportionality Theorem
Triangle Midsegment Theorem: The segment connecting the midpoints of two sides of the triangle is parallel to the third side and half the length of the third side.
Use $\triangle A B C$, where L, M, and N are midpoints of the sides.

1. $\overline{\mathrm{LM}} \|$ \qquad
2. $\overline{\mathrm{AB}} \|$ \qquad
3. If $\mathrm{AC}=20$, then $\mathrm{LN}=$ \qquad
4. If $M N=7$, then $A B=$ \qquad
5. If $\mathrm{NC}=9$, then $\mathrm{LM}=$ \qquad

6. If $L M=3 x+7$, and $B C=7 x+6$, then $L M=$ \qquad
7. If $M N=x-1$, and $A B=6 x-1$, then $A B=$ \qquad
8. Find each measure. H, G, and I are all midpoints.
a) HI \qquad
b) DF \qquad
c) GE \qquad
d) $\mathrm{m} \angle \mathrm{HIF}$ \qquad
e) $m \angle H G D$ \qquad f) $m \angle D$ \qquad

CCGPS Geometry

Triangle Proportionality Theorem: If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides proportionally.
Find the value of x :
9.

10.

11.

12.

13.

14.

